Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2014): 20232383, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196355

RESUMEN

Natural pest and weed regulation are essential for agricultural production, but the spatial distribution of natural enemies within crop fields and its drivers are mostly unknown. Using 28 datasets comprising 1204 study sites across eight Western and Central European countries, we performed a quantitative synthesis of carabid richness, activity densities and functional traits in relation to field edges (i.e. distance functions). We show that distance functions of carabids strongly depend on carabid functional traits, crop type and, to a lesser extent, adjacent non-crop habitats. Richness of both carnivores and granivores, and activity densities of small and granivorous species decreased towards field interiors, whereas the densities of large species increased. We found strong distance decays in maize and vegetables whereas richness and densities remained more stable in cereals, oilseed crops and legumes. We conclude that carabid assemblages in agricultural landscapes are driven by the complex interplay of crop types, adjacent non-crop habitats and further landscape parameters with great potential for targeted agroecological management. In particular, our synthesis indicates that a higher edge-interior ratio can counter the distance decay of carabid richness per field and thus likely benefits natural pest and weed regulation, hence contributing to agricultural sustainability.


Asunto(s)
Agricultura , Fabaceae , Productos Agrícolas , Europa (Continente) , Fenotipo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38036909

RESUMEN

Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37099095

RESUMEN

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

4.
Sci Rep ; 12(1): 15904, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151261

RESUMEN

Knowledge gaps regarding the potential role of pesticides in the loss of agricultural biodiversity worldwide and mixture-related issues hamper proper risk assessment of unintentional impacts of pesticides, rendering essential the monitoring of wildlife exposure to these compounds. Free-ranging mammal exposure to legacy (Banned and Restricted: BRPs) and currently used (CUPs) pesticides was investigated, testing the hypotheses of: (1) a background bioaccumulation for BRPs whereas a "hot-spot" pattern for CUPs, (2) different contamination profiles between carnivores and granivores/omnivores, and (3) the role of non-treated areas as refuges towards exposure to CUPs. Apodemus mice (omnivore) and Crocidura shrews (insectivore) were sampled over two French agricultural landscapes (n = 93). The concentrations of 140 parent chemicals and metabolites were screened in hair samples. A total of 112 compounds were detected, showing small mammal exposure to fungicides, herbicides and insecticides with 32 to 65 residues detected per individual (13-26 BRPs and 18-41 CUPs). Detection frequencies exceeded 75% of individuals for 13 BRPs and 25 CUPs. Concentrations above 10 ng/g were quantified for 7 BRPs and 29 CUPs (in 46% and 72% of individuals, respectively), and above 100 ng/g for 10 CUPs (in 22% of individuals). Contamination (number of compounds or concentrations) was overall higher in shrews than rodents and higher in animals captured in hedgerows and cereal crops than in grasslands, but did not differ significantly between conventional and organic farming. A general, ubiquitous contamination by legacy and current pesticides was shown, raising issues about exposure pathways and impacts on ecosystems. We propose a concept referred to as "biowidening", depicting an increase of compound diversity at higher trophic levels. This work suggests that wildlife exposure to pesticide mixtures is a rule rather than an exception, highlighting the need for consideration of the exposome concept and questioning appropriateness of current risk assessment and mitigation processes.


Asunto(s)
Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Animales , Ecosistema , Monitoreo del Ambiente , Fungicidas Industriales/análisis , Insecticidas/análisis , Ratones , Plaguicidas/química , Musarañas
5.
Landsc Ecol ; 37(6): 1573-1586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611158

RESUMEN

Context: Flowering plants can enhance wild insect populations and their pollination services to crops in agricultural landscapes, especially when they flower before the focal crop. However, characterizing the temporal availability of specific floral resources is a challenge. Objectives: Developing an index for the availability of floral resources at the landscape scale according to the specific use by a pollinator. Investigating whether detailed and temporally-resolved floral resource maps predict pollination success of broad bean better than land cover maps. Methods: We mapped plant species used as pollen source by bumblebees in 24 agricultural landscapes and developed an index of floral resource availability for different times of the flowering season. To measure pollination success, patches of broad bean (Vicia faba), a plant typically pollinated by bumblebees, were exposed in the center of selected landscapes. Results: Higher floral resource availability before bean flowering led to enhanced seed set. Floral resource availability synchronous to broad bean flowering had no effect. Seed set was somewhat better explained by land cover maps than by floral resource availability, increasing with urban area and declining with the cover of arable land. Conclusions: The timing of alternative floral resource availability is important for crop pollination. The higher explanation of pollination success by land cover maps than by floral resource availability indicates that additional factors such as habitat disturbance and nesting sites play a role in pollination. Enhancing non-crop woody plants in agricultural landscapes as pollen sources may ensure higher levels of crop pollination by wild pollinators such as bumblebees. Supplementary information: The online version contains supplementary material available at 10.1007/s10980-022-01448-2.

6.
Environ Pollut ; 305: 119290, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35436506

RESUMEN

Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 µg kg-1, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQi) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects".


Asunto(s)
Artrópodos , Ácaros , Oligoquetos , Plaguicidas , Contaminantes del Suelo , Acetilcolinesterasa , Agricultura , Animales , Invertebrados , Plaguicidas/toxicidad , Reproducción , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
7.
Sci Total Environ ; 823: 153582, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114221

RESUMEN

The use of pesticides in agriculture to protect crops against pests and diseases generates environmental contamination. The atmospheric compartment contributes to their dispersion at different distances from the application areas and to the exposure of organisms in untreated areas through dry and wet deposition. A multiresidue analytical method using the same TD-GC-MS analytical pipeline to quantify pesticide concentrations in both the atmosphere and rainwater was developed and tested in natura. A Box-Behnken experimental design was used to identify the best compromise in extraction conditions for all 27 of the targeted molecules in rainwater. Extraction yields were above 80% except for the pyrethroid family, for which the recovery yields were around 40-59%. TD-GC-MS proved to be a good analytical solution to detect and quantify pesticides in both target matrices with low limits of quantification. Twelve pesticides (six fungicides, five herbicides and one insecticide) were quantified in rainwater at concentrations ranging from 0.5 ng·L-1 to 170 ng·L-1 with a seasonal effect, and a correlation was found between the concentrations in rainwater and air. The calculated cumulative wet deposition rates are discussed regarding pesticide concentrations in the topsoil in untreated areas for some of the studied compounds.


Asunto(s)
Herbicidas , Residuos de Plaguicidas , Plaguicidas , Atmósfera , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Herbicidas/análisis , Residuos de Plaguicidas/análisis , Plaguicidas/análisis
8.
J Chromatogr A ; 1651: 462339, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34161838

RESUMEN

A new sensitive and selective analytical methodology to quantify glyphosate (GLY), aminomethylphosphonic acid (AMPA), and glufosinate (GLU) in both soil and earthworms (Allolobophora chlorotica) was developed. The extraction and purification methods were optimized. The samples were extracted with various aqueous solutions (HNO3, H2O, KOH and borate buffer) and derivatized with 9-Fluorenylmethyl chloroformate (FMOCCl). To optimize the extraction step, a method to remove the excess FMOCCl was applied based on liquid-liquid extraction with diethyl ether. The purification of derivatized extracts was carried out using XLB solid phase extraction (SPE) cartridges before internal standard quantification by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). The elution step was optimized to obtain the best recoveries possible, which was with acidic methanol (1% formic acid) (67% for GLY, 70% for GLU and 65% for AMPA). The extraction and purification method followed by analysis of the two herbicides and AMPA in soils using LC/MS/MS determined limit of quantification (LOQ) values of 0.030 µg g - 1 for GLY, 0.025 µg g - 1 for AMPA and 0.020 µg g - 1 for GLU . For earthworms, LOQ were 0.23 µg g - 1 for GLY, 0.20 µg g - 1 for AMPA and 0.12 µg g - 1 for GLU. . The developed method was applied to determine these compounds in natural soils and earthworms.


Asunto(s)
Aminobutiratos/análisis , Técnicas de Química Analítica/métodos , Glicina/análogos & derivados , Oligoquetos/química , Organofosfonatos/análisis , Suelo/química , Aminobutiratos/aislamiento & purificación , Animales , Técnicas de Química Analítica/instrumentación , Cromatografía Liquida , Glicina/análisis , Glicina/aislamiento & purificación , Herbicidas/análisis , Herbicidas/aislamiento & purificación , Organofosfonatos/aislamiento & purificación , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Glifosato
9.
PLoS One ; 15(7): e0235054, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32609728

RESUMEN

Elucidating the diets of insect predators is important in basic and applied ecology, such as for improving the effectiveness of conservation biological control measures to promote natural enemies of crop pests. Here, we investigated the aphid diet of two common aphid predators in Central European agroecosystems, the native Coccinella septempunctata (Linnaeus) and the invasive Harmonia axyridis (Pallas; Coleoptera: Coccinellidae) by means of high throughput sequencing (HTS). For acquiring insights into diets of mobile flying insects at landscape scale minimizing trapping bias is important, which imposes methodological challenges for HTS. We therefore assessed the suitability of three field sampling methods (sticky traps, pan traps and hand-collection) as well as new aphid primers for identifying aphid prey consumption by coccinellids through HTS. The new aphid primers facilitate identification to species level in 75% of the European aphid genera investigated. Aphid primer specificity was high in silico and in vitro but low in environmental samples with the methods used, although this could be improved in future studies. For insect trapping we conclude that sticky traps are a suitable method in terms of minimizing sampling bias, contamination risk and trapping success, but compromise on DNA-recovery rate. The aphid diets of both field-captured ladybird species were dominated by Microlophium carnosum, the common nettle aphid. Another common prey was Sitobion avenae (cereal aphid), which got more often detected in C. septempunctata compared to H. axyridis. Around one third of the recovered aphid taxa were common crop pests. We conclude that sampling methodologies need constant revision but that our improved aphid primers offer currently one of the best solutions for broad screenings of coccinellid predation on aphids.


Asunto(s)
Áfidos/genética , Escarabajos/fisiología , Cadena Alimentaria , Conducta Predatoria , Alimentación Animal/análisis , Animales , Áfidos/clasificación , ADN/análisis , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Especies Introducidas , Especificidad de la Especie
10.
Proc Natl Acad Sci U S A ; 116(33): 16442-16447, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358630

RESUMEN

Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter "crop heterogeneity") can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.


Asunto(s)
Agricultura , Biodiversidad , Productos Agrícolas , Ecosistema , Animales , Abejas , Aves , Mariposas Diurnas , Europa (Continente) , Humanos , América del Norte , Arañas
11.
Proc Biol Sci ; 285(1872)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445017

RESUMEN

Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish (Raphanus sativus), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/fisiología , Ambiente , Polinización , Productos Agrícolas/crecimiento & desarrollo , Francia , Alemania , Reproducción , España , Reino Unido
12.
Nat Commun ; 5: 4359, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25008773

RESUMEN

The risk assessment of plant protection products on pollinators is currently based on the evaluation of lethal doses through repeatable lethal toxicity laboratory trials. Recent advances in honeybee toxicology have, however, raised interest on assessing sublethal effects in free-ranging individuals. Here, we show that the sublethal effects of a neonicotinoid pesticide are modified in magnitude by environmental interactions specific to the landscape and time of exposure events. Field sublethal assessment is therefore context dependent and should be addressed in a temporally and spatially explicit way, especially regarding weather and landscape physiognomy. We further develop an analytical Effective Dose (ED) framework to help disentangle context-induced from treatment-induced effects and thus to alleviate uncertainty in field studies. Although the ED framework involves trials at concentrations above the expected field exposure levels, it allows to explicitly delineating the climatic and landscape contexts that should be targeted for in-depth higher tier risk assessment.


Asunto(s)
Abejas/efectos de los fármacos , Geografía , Plaguicidas/toxicidad , Tiempo (Meteorología) , Animales , Abejas/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Relación Dosis-Respuesta a Droga , Fenómenos de Retorno al Lugar Habitual/efectos de los fármacos , Fenómenos de Retorno al Lugar Habitual/fisiología , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...